
Deploy Content Services GraphQL into a
traditional IBM WebSphere Application Server environment

The IBM Content Services GraphQL (CSGQL) API is a part of the IBM® FileNet® P8 suite of
products which contain a set of robust APIs that range from core platform APIs to supporting
application APIs.

The CSGQL API provides a schema and an easy-to-understand query language system that
simplifies application development for your Content Platform Engine (CPE). The API schema
definition of types and fields matches Content Engine Java API object model closely, with
necessary and desirable extensions for natural GraphQL developer consumption.

This document describes the deployment and configuration of IBM Content Services GraphQL
API into a traditional IBM WebSphere Application Server (tWAS) 9.0 environment. With
this configuration, CSGQL can communicate with the FileNet Content Manager hosted in tWAS
environments. Mixing of either service deployed in a containerized environment is not
supported.

V5.5.7a

Roadmap
Prerequisites

Manual versus automation helper scripts for configuration and deployment
Authentication choices
Overview of options for Federated repositories and LDAP servers configuration
CPE information

CPE LTPA keys export
CPE certificates export
CPE connection information

Prepare
Install CSGQL war file and Content Engine JAVA API client files
(Optional) Clone deployment helper scripts to a local repository
Gather federated repositories information

Option 1: Manually configure CPE and CSQL matching federated repositories
Option 2: Create CSGQL Federated repositories configuration using CPE CMUI profile
Option 3: Use deployment helper scripts to create CSGQL federated repositories

Deploy Content Services GraphQL
Deploy war file
Add and configure required shared libraries

Create shared Libraries
Associating the shared library with the GraphQL application
Set the parent last class loader policy

Configure the CS-GraphQL application
Map Application Security to all authenticated
Set JVM arguments
Enable Single Sign On

LTPA keys import
Import LTPA keys
Configure inbound trusted realms

Configure Secure (SSL) communication between CPE and GraphQL

Validate the Configuration
Debug
Trace flags
Success

(Optional) Configure OAuth/OIDC between CS-GraphQL and CPE
Register GraphQL with Identity Provider
XSRF(CSRF)/CORS headers

Prerequisites
These instructions assume other services required in the system are already deployed and
configured. These other services include:

• WebSphere traditional application server or cluster environments to host the CPE and CSGQL
deployments.

• FileNet Content Manager Content Platform Engine pre-exists at the same version as CSGQL to be
deployed.

• Directory Services (LDAP) or Identity Provider (IdP) to manage user authentication.

As part of the preparation, necessary information about these other services must be gathered.
The reader of this document is assumed to be knowledgeable about all these services and have
the privileges needed to interact with them as needed.

Manual versus automation helper scripts for configuration and deployment
Limitations where manual process should be followed.

• Scripts are written for the Linux/Unix platform only. If the traditional WebSphere
Application Server (tWAS) for hosting CSGQL is installed on Windows, the automated
bash scripts cannot be used.

• Scripts target deployment under a tWAS single application server environment.
Deployment to a tWAS cluster should follow the manual process.

• Configuration of OAUTH is outside of the scope of the scripts. The scripts will configure
GraphQL to use BASIC authentication with the Content Platform Engine (CPE) server.
Information about OAUTH/OIDC configuration between CSGQL and CPE provided in
the below section (Optional) Configure OAuth/OIDC between CS-GraphQL and CPE .

The main automation script will read key-value pairs from an input file and uses the values to
invoke subscripts. Each subscript performs one specific task. You can run a subscript directly by
passing in the same input file. The subscript will access the key-value pairs required to complete
its particular task.

After reviewing these manual instructions and the scripts, you may decide a combination of the
two better fits your situation.

Authentication choices

The documented steps follow the BASIC authentication configuration first to establish a base
working environment. Those steps are followed with the additional configuration needed to
support single sign on (SSO) integrated with an IdP. In the production environment, it is
recommended to utilize CSGQL with SSO only. BASIC authentication is not recommended for
production use.

Overview of options for Federated repositories and LDAP servers configuration
To support CSGQL deployment in tWAS, the CPE and CSGQL applications must be deployed
into WebSphere instances configured to use federated LDAP repositories. The applications can
be deployed within the same tWAS cell or on the same tWAS node. But they must not share a
tWAS application server instance since each needs to run in a distinct JVM.

If the applications will be deployed into different tWAS cells, to avoid issues with authentication
and communication, the LDAP configuration created in the tWAS instance hosting CSGQL must
be identical to the ldap configuration for the tWAS instance hosting the CPE. Three options exist
to avoid trouble:

Option 1: Manually configure CPE and GSQGL matching federated repositories
Option 2: Create CSGQL Federated repositories using CPE CMUI profile
Option 3: Use deployment helper scripts to create CSGQL federated repositories

You will need to gather LDAP servers and configuration information needed from CPE tWAS to
populate or verify matching security on GraphQL tWAS server. Minimally this information is
needed for each LDAP server included as a federated LDAP repository:

Directory type
Primary host name and port
Bind distinguished name and Bind password
User, group, and group membership attributes
Login property

For details of where the required information will be used, see section Add each LDAP server
configuration as a LDAP repository below in the Procedures.

CPE information
Complete the following tasks to export or gather information about the configuration of the
tWAS environment hosting the CPE. The information is used either to complete the
configuration tasks manually or as inputs to the configureGQL scripts.

CPE LTPA keys export

Export CPE LTPA key from tWAS and download to a system with access to the tWAS instance
targeted for the CSGQL deployment.

1. In the CPE tWAS administration console, navigate to Security > Global security >
LTPA.

2. Provide a password for the ltpa.keys file. Remember this password
3. Provide a path for the LTPA file, for example,

/opt/IBM/WebSphere/AppServer/profiles/Appsrv01/ltpa.keys
4. Click Export keys

CPE certificates export
(Optional) If communications between the CPE and CSGQL will not utilize SSL, this step is not
required. If SSL will be used and the CPE certificate is signed by a trusted root authority, this
step is not required if the tWAS environment for CSGQL includes the trusted root authority trust
certificate.

If SSL communications will use a self-signed certificate to secure communications between the
CSGQL server and the CPE server, the SSL certificate for the CPE must be exported from the
CPE application server. Export certificates using to .pem format file.

To export using command-line tools:

Example commands to export SSL certificate from CPE tWAS server keystore

cd <APP_SERVER_ROOT>/profiles/AppSrv01/config/cells/<CELL_NAME>/nodes/<NODE_NAME>

<APP_SERVER_ROOT>/java/8.0/bin/keytool -export -alias default -keystore
<KEYSTORE_PATH> -storetype pkcs12 -storepass WebAS -rfc -file cpe.pem

To directly retrieve a signer certificate from the tWAS environment for the CPE into the tWAS
environment for CSGQL, follow this instructions in this WebSphere Application Server
documentation topic:

Adding the signer certificate from the secondary deployment manager to the local trust
store

CPE connection information
You will need the following information to construct the URL for the CPE.

Server	Hostname	on	which	Content	Platform	Engine	is	accessed	or	route	to	a	load-balancer	for	the	CPE	
Port	 Communication	port	number	for	the	application	server.	The	port	value	is	optional	if	the	connection	

does	not	require	a	port	to	specified	in	the	URL	
Path	 Relative	path	to	the	web	service	interface	endpoint	for	Content	Platform	Engine.	By	default,	the	path	

is	set	to	wsi/FNCEWS40MTOM/	

Example -Decm.content.remote.cpeuri=http://xyz.example.com:9080/wsi/FNCEWS40MTOM/

Prepare
Several tasks must be completed before the deployment of the CSGQL API application. These
are either performed using the WASt administrative interface or on the machine that has access
to the WASt administrative interface.

Install CSGQL war file and Content Engine JAVA API client files
On the machine where CSGQL application will be manually deployed into WASt or the helper
scripts deploy the CSGQL application will be run, complete the following actions in the
installation wizard.

1. Run the Content Engine Client installer that is from the same release version as the
targeted CPE.

2. Read and accept the licenses presented
3. Specify the folder path where the installer will place the files then select Next
4. Provide the CPE connection information from which you intend to download the files
5. Choose as the FileNet P8 applications to install then select Next

a. “Java Client Application”
b. “IBM Content Services GraphQL API servlet”

6. As the Application Server Type, select “WebSphere Application Server” from the
dropdown then select Next

7. Review the CPE URLs are correct, then select Next
8. Review the CPE URL for the Web Services Transport is correct, then select Next
9. Select Install to initiate the download of the files.
10. Confirm the download was successful be reviewing the files present in the

<installation path>/lib directory contain the CPE java client APIs files and
the content-graphql-api.war file.

(Optional) Clone deployment helper scripts to a local repository

Create a local copy of the Git Hub repository that contains the CSGQL deployment automation
helper scripts.

1. Download or clone the repository on your local machine:

git clone https://github.com/ibm-ecm/ibm-content-platform-engine-samples

2. Change to the CSGraphQLAPIDeployScripts folder that supports tWAS in your local
repository:

cd CSGraphQLAPIDeployScripts/websphere

If you plan to utilize the deployment helper scripts, the remainder of this preparation section as
well as the section Deploy Content Services GraphQL that follows will be skipped. However the
information in this document can be used to understand the information required by the helper
scripts to automate these same tasks.

Continue with the instructions in the readme.md file located in the
CSGraphQLAPIDeployScripts/websphere folder or by accessing the copy in GitHub here.
After completing the process described in the readme.md for the deployment helper scripts,
return to section in this document Validate the Configuration.

Gather federated repositories information
Before deploying the CSGQL application onto tWAS, verify the LDAP server configuration
information gathered during the preparation phase is correct and current. To avoid issues, the
LDAP configuration created in the tWAS instance hosting CSGQL must be identical to the ldap
configuration for the tWAS instance hosting the CPE. Follow the instructions below to create
configurations in the tWAS instance hosting the CSGQL deployment.

For additional information about the CPE and configuration of the directory services in WASt,
see Configuring Content Platform Engine application server authentication (LDAP) settings

Note: If you choose to use the deployment helper scripts, this entire topic can be skipped.
However the information here can be used to verify the configuration produced by the
helper scripts is correct or to troubleshoot issues.

Option 1: Manually configure CPE and CSQL matching federated repositories
 In this step we go through the step-by-step instruction on configuring the ldap as a
federated repository in tWAS. If your CPE ldap configuration is different or contains any
additional changes, please apply the same to the CSGQL ldap configuration to ensure they are
in-sync. The resulting federated repositories configuration in the tWAS for CSGQL contains the
same LDAP definitions as a present in the tWAS hosting the CPE/

1. Start WebSphere Application Server and log in to the Integrated Solutions Console on the
Deployment Manager by going to the following web
address: http://websphere_Application_Server_host_name:port/ibm/console

2. Click Log in and enter the credentials of the administrative user ID that you specified during the
installation of WebSphere Application Server.

3. Click Security > Global Security.

Create Federated Repository entry

4. Select Federated Repositories from the Available realm definitions field, and then click Configure.

Add each LDAP server configuration as a LDAP repository

5. Click Add repositories and then, on the Repository reference page, click New Repository > LDAP
repository.

6. On the New page, type a repository identifier, such as LDAP1 into the Repository identifier field.

7. Specify the LDAP directory that you are using in the Directory type field.

8. Type the host name of the primary LDAP directory server in the Primary host name field. The host
name is either an IP address or a domain name service (DNS) name. Also supply the port if needed.

9. Provide values for the Bind distinguished name and Bind password fields

10. Click Apply and then click Save.

11. Edit the Additional properties to set the user, group, and membership attributes to match to your
CPE ldap configuration. Please note that it is very important to get the ldap configuration identical to
the CPE tWAS ldap configuration.

12. On the Federated repositories page, use Manage Repositories under Related Items to navigate to the
newly created repository and verify the configuration matches the one seen in the CPE tWAS.

13. On the respository General Properties page under Related Items, click on the link LDAP Test
Query

14. Make sure to check you have the correct values for LDAP server Host, Port, Base DN, Bind DN.

15. Enter the Bind Password for the Bind distinguished Name user.

16. Enter the Search filter string. For example for IBM SDS utilize a filter that uses the objectclass
organizationalPerson to search for all users whose common name (cn) begins with “test”.

(&(objectclass=organizationalPerson)(cn=test*))

Or leave it as blank to return all entries.

17. Click Test Query

18. This results in a page with the LDAP entries, if you get any error adjust the values on the page until
you see the ldap entries corresponding to your query

The following procedure is a second method to test the LDAP configuration and also add a particular user the
administrative security role within the application server.

1. From Left Navigation, Click Users and Groups. Click Administrative User Roles .
2. To add a user, click Add on the Console users panel.

3. To add a new administrator user, follow the instructions on the page to specify a user, and

select the Administrator role.
4. Enter the appropriate Search string. example, user* displays only users with the user

prefix. Click Search
5. Select the Available users and select the right arrow to add to the Mapped to Role. If

there are no users Available, then adjust the Search string or fix the ldap configuration.
6. Once the user is added to the Mapped to role list, click OK. The specified user is mapped

to the security role.
7. After the modifications are complete, click Save to save the mappings.
8. Restart the application server for changes to take effect.

Enable WebSphere Application Security and Administrative security
1. In the WebSphere Application Server administrative console, click Security > Global

security.
2. Select Enable administrative security. (optional)
3. Ensure Enable application security is selected.

Administrative security protects the WebSphere web console from un authenticated access.

Make sure the ldap is properly configured and users are added as the Administrators.
If they are any issues with ldap and users, the WebSphere administration console
could be inaccessible. To access the administration console and troubleshoot the
issues, follow this technote: Disabling WebSphere administrative security when
admin console is not accessible .

Application Security along with the application’s security mapping makes the CS-GraphQL
application secured. When you access the CS-GraphQL application this setting configures it
to prompt with a Basic Auth dialogue or SSO dialogue depending on the SSO solution
chosen.

Realm name in CS-GraphQL tWAS and CPE tWAS
Make sure the Realm name under Security > Global security > Federated Repositories
matches the realm in the LDAP configuration of your CPE tWAS server.

Option 2: Create CSGQL Federated repositories configuration using CPE CMUI profile
If the CPE tWAS LDAP configuration was configured through the configuration tool (configmgr
or CMUI) provided with CPE, it is possible to leverage that tool. The CMUI profile utilized
previously to create the LDAP configuration for the CPE can be reused against the GraphQL
tWAS to configure the ldap using the same configure LDAP task.

1. If the tWAS for CSGQL is located on a different system, use the FileNet Content
Manager server installer to install the configuration manager onto the tWAS system
where CSGQL will be deployed.

2. Make a copy CPE configuration manager profile to edit and use with CSGQL.
3. Load the copied profile into CMUI which has access to the tWAS for CSGQL.
4. Use the “Edit Application Server Properties” dialog to modify the CMUI profile to point

to the CS-GraphQL tWAS. Use “Test Connection” to verify the ability to connect to the
tWAS for CSGQL.

5. Run the Configure LDAP task used previously to configure the tWAS for the CPE. This
creates the same ldap configuration as in the CPE, including the base DN and realm
name. If there are any additional changes that were done in CPE tWAS ldap
configuration after the configmgr task was initially rn, apply the same changes to the
CSGQL tWAS ldap configuration as well.

Sample values used to complete the configmgr task “Configure LDAP” with the configuration
manager user interface (CMUI) for a system using IBM Security Directory Services.

Option 3: Use deployment helper scripts to create CSGQL federated repositories
By running all the scripts using , or by running the subset that target the tasks to configuration
the federated repositories and LDAP servers, you can use the automation helper scripts to create
this part of the configuration. See the CSGraphQLAPIDeployScripts/websphere/readme.md
file for more information.

Deploy Content Services GraphQL
Note: If you choose to use the deployment helper scripts, this entire topic can be skipped.
However the information here can be used to verify the deployment performed by the helper
scripts is correct or to troubleshoot issues.

Deploy war file
From the CPE media or installation location find the content -graphql-api.war and deploy the
application onto GraphQL tWAS.

1. Open the WebSphere Integrated Solutions Console.
2. Click Applications > Application Types > WebSphere enterprise applications.
3. Click Install
4. Under Path to the new application, select Remote file system.

Choosing Remote file system works for both local drives and network drives.

5. Under Full path enter the path to the content -graphql-api.war web application file. The
content -graphql-api.war file can be found in the lib directory of the CPE Client installed
directory

6. Click Next to accept all default options until you reach the Map context roots for web
modules page.

7. In the Map context roots for web modules, set Context Root to /content-services, and
click Next.

8. Click Finish.
9. Verify that the content -graphql-api.war application was installed correctly and

click Save directly to the master configuration.

Add and configure required shared libraries

Create shared Libraries

CS GraphQL API app is not built with the CPE client Jar (Jace.jar). So, when an application is
being deployed Jace jar has to be loaded as an external library. Some older version of CPE
(before 556) also requires log4j jar. This step we are going to create a shared library in CS-
GraphQL tWAS and associate the shared library with the content-graphql-api_war application.

The Jace.jar can get from the lib directory of the CPE client installed location. Make sure that the
version Jace.jar matches the version of CPE this GraphQL server is connecting to.

1. Expand Environment and select Shared Libraries.
2. Make sure the scope is set appropriately and create a new shared library.

3. Click New and fill out the correct information including the Name (CPE 557 Client Libs)

and appropriate Classpath. Click Apply.
4. Make sure these jars files are available to CS-GraphQL tWAS locally at the folder

specified and has read permissions

NOTE: Do NOT Select the checkbox "Use an isolated class loader for this shared library"

5. Click OK, save the configuration

Associating the shared library with the GraphQL application

1. Click Applications > Application Types > WebSphere enterprise applications.
2. Select the content-graphql-api_war Application and then select Shared library

references in the References. Select Web module (second checkbox) content-graphql-
api.war, then click on Reference shared libraries.

3. Select the newly created library (CPE 557 Client Libs) and click on the right arrow to add
the shared library to Selected textbox. Click OK.

4. The shared library is now associated with the web module. Click OK, save the

configuration, and then restart the application for the change to take effect.
Set the parent last class loader policy

1. Click Applications > Application Types > WebSphere enterprise applications.
2. Select the content-graphql-api_war Application and then select Class loading and

update detection in the Detail Properties.
3. Under Class Loader order, select the Classes loaded with local class loader first

(parent last) radio button.
4. Under WAR class loader policy, select the Single class loader for application radio

button.

5. Click OK, save the configuration.

Configure the CS-GraphQL application
Note: If you choose to use the deployment helper scripts, this entire topic can be skipped.
However the information here can be used to verify the configuration produced by the helper
scripts is correct or to troubleshoot issues.

Map Application Security to all authenticated
 In this step, we are associating the All Authenticated in Trusted Realms or All
Authenticated Users to the application. So only authenticated users will get the access to the
application. Before this step, ldap must have been configured and security must have been
enabled.

1. In the administrative console page, click Applications > Application types >

WebSphere enterprise applications.
2. Select the content-graphql-api_war Application. Under Detail Properties, click Security

role to user/group mapping.
3. Select Role AllAuthenticated.

4. Click Map Special Subjects, that results in a drop down box.
5. From the drop down select All Authenticated In Trusted Realms or All Authenticated in

Application’s Relam.
6. Click OK and Save changes to the master configuration.

Set JVM arguments

1. In the Administration Console select Servers
2. Expand Server Type and select WebSphere application servers
3. Click on the name of your server
4. Expand Java and Process Management and select Process Definition.
5. Under the Additional Properties section, click Java Virtual Machine.
6. Scroll down and locate the textbox for Generic JVM arguments.
7. Enter the following JVM arguments without comments, .

Note - tWAS doesn’t accept comments as part of JVM arguments Make sure to remove
the comments. Comments are shown below to explain the JVM arguments only
#When the CPE Metadata is authored the cached Client Metadata Cache on GraphQL
becomes stale. This Interval in seconds refreshes the Metadata Cache. Use it only when
there is a metadata authoring at CPE
-Dmetadata.cache.refresh.interval=120
#GraphIQL is GUI client included with application to test the graphql queries. #This
option disables several security checks like CORS, XSRF. Its not #recommended to use in
production
-Dcom.ibm.ecm.content.graphql.enable.graphiql=TRUE
-Dcom.ibm.ws.http.options.writeTimeout=180
-Dcom.ibm.ws.http.options.readTimeout=180
#CPE MTOM URI for this GraphQL server to communicate.
-Decm.content.remote.cpeuri=https://abc.example.com:9443/wsi/FNCEWS40MTOM/
-Dhttps.protocols=TLSv1.2
#WSI Auth token order, for basic auth use the order ltpa,oauth
for oauth use the order oauth,ltpa
-Dcom.filenet.authentication.wsi.AuthTokenOrder=oauth,ltpa
this automatically detects the LTPA or OAuth token in the request
-Dcom.filenet.authentication.wsi.AutoDetectAuthToken=true
-Dsun.net.http.retryPost=false
allowed origin JVM argument needs to specify
-Decm.content.graphql.cors.enable=true

8. Restart the CS-GraphQL tWAS

Enable Single Sign On

Use of single sign on is strongly recommended for production environments.

1. In the WebSphere Application Server administration console, navigate to Security >
Global security > Single sign-on, enter a Domain Name, and check the following
settings:

o Enabled
o Requires SSL (with Domain name)
o Web inbound security attribute propagation
o Set security cookies HTTP Only to help prevent cross-site scripting attacks

LTPA keys import
 Make sure the LDAP realm name is same for the CPE and CSGQL systems. LTPA keys
works within the realm. It is important to configure ldap and realm before proceeding so the keys
exported from the CPE match the realm the key is imported into for use by the CSGQL.

Import LTPA keys
1. Copy the LTPA keys exported on to the GraphQL tWAS system for example,

/opt/IBM/WebSphere/AppServer/profiles/Appsrv01/ltpa.keys.
2. In the GraphQL tWAS administration console, navigate to Security > Global security >

LTPA.
3. Provide a password for the ltpa.keys file. You entered this password while exporting this

file
4. Provide a path for the LTPA file you exported from CPE tWAS, for example,

/opt/IBM/WebSphere/AppServer/profiles/Appsrv01/ltpa.keys.
5. Click Import

Configure inbound trusted realms

1. Click Security > Global Security.
2. Select Federated repositories click Configure
3. Under Related Items, select Trusted authentication realms - inbound.
4. Select the Trust realms as indicated below
5. Select the check box next to realm name created in previous steps and click Trusted

Configure Secure (SSL) communication between CPE and GraphQL
If using a self-signed certificate on the CPE server, and you previously exported the certificate as
a part of preparation, import it into the tWAS instance for the CSGQL API application now.

1. Navigate to the profile to host the CSGQL deployment

cd <APP_SERVER_ROOT>/profiles/AppSrv01/config/cells/<CELL_NAME>/nodes/<NODE_NAME>

2. Copy the cpe.pem file previously exported to the CS-GraphQL tWAS server location
<app_server_root>/profiles/AppSrv01/config/cells/<CELL_NAME>/nodes/<NODE_NAME>/
cpe.pem

3. Example command to run the keytool utility to import the certificate

<APP_SERVER_ROOT>/java/8.0/bin/keytool -importcert -keystore trust.p12 -storetype
pkcs12 -storepass WebAS -alias cpe -file cpe.pem

• Ensure the CSGQL API application server is configured with the JVM argument for CPE
URI(-Decm.content.remote.cpeuri) that utilizes the https end point.

Validate the Configuration
With this configuration, the CSGQL API is available using the Basic authentication. To validate
the content-graphql-api_war application, access the CsGQL ping page

http://server:port/content-services/ping
by supplying the host and port information for the deployed CSGQL application.

This URL produces a result similar to

{
"Build-Date" : "May 04, 2021 at 09:21",
"Implementation-Title" : "IBM FileNet Content Services GraphQL API - content-graphql-api",
"Implementation-Version" : "20210504-0921-571-Administrator",
"Product-Version" : "5.5.7",
"Build-Number" : "571"
}

If you are having issues accessing the validation ping page, examine the deployment and context
root to ensure they match with what appears for the application in WASt. Also review the
contents of the tWAS SystemOut.log for the instance hosting the CSGAL application and verify
it reports that the content-graphql-api.war file started successfully.

Ping only proves that the application deployed properly. It does not validate the CS-GraphQL
API functionality and does not confirm the CPE and CS-GraphQL API are communicating.

To test the CS-GraphQL API functionality access http://server:port/content-
services/ by supplying the host and port information for the deployed CSGQL application.
This comes up with the GraphIql user interface if this JVM argument is present:

-Dcom.ibm.ecm.content.graphql.enable.graphiql=TRUE

Enter the following GraphQL Query (replace the sample object store name OS1 with the name of
an Object Store in your local FileNet P8 domain)

{
 _apiInfo(repositoryIdentifier:"OS1")
 {
 buildDate
 implementationVersion
 buildNumber
 productVersion
 implementationTitle
 cpeInfo {
 cpeURL
 cpeUser
 repositoryName
 }
 }
}

Debug
If you see “cpeInfo” : null, it implies that there is an issue with the connection between CS-
GraphQL and CPE.

1. Check the JVM argument with the cpeuri value is correct and specifies the MTOM
endpoint for the CPE services

-Decm.content.remote.cpeuri=https://myhost.company.com:9443/wsi/FNCEWS40MTOM/

2. Verify the LTPA configuration between the CPE and CS-GraphQL by following the
steps in the section above Enable Single Sign On to ensure the configuration is correct.

Trace flags

Set the following trace flags in CS-graphQL tWAS to trace the GraphQL system. Do not
enable these flags in production.

Option1: Set trace flags manually using the WASt administrative interface

1. Open the WebSphere Application Service Integrated Solutions Console for the WASt
instance hosting the CSGQL application.

2. Expand Troubleshooting and select Logs and trace.
3. Select the server on which you want to enable traces, and then select Diagnostic Trace.
4. Click the Runtime tab.
5. Click Change Log Detail Levels.
6. Enter *=info:com.ibm.ecm.content.graphql.*=all in the Change Log Level Details text

box.
7. To trace LTPA token issues add com.ibm.ws.security.ltpa.LTPAToken2=all
8. Select Enable log and trace Correlation with Include request IDs in log and trace

records

Option2: Set trace flags using the helper scripts
Trace flags can be set by using the this script will enable or disable logging for GraphQL based
on the setting of ENABLE_GQL_DBG and ENABLE_LTPA_DBG in the
configureGQL.properties file.

debugGQL.sh <properties_file>

For information about the script, see the readme.md file located in the
CSGraphQLAPIDeployScripts/websphere folder or by accessing the copy in GitHub here.

Success
For a successful configuration you will see the response as shown below

(Optional) Configure OAuth/OIDC between CS-GraphQL and CPE

Register GraphQL with Identity Provider
All identity providers (IdP) supporting OAuth 2.0 and OpenID Connect authentication have
some registration mechanism to identify the client application to the IdP. At a minimum a client
id, client secret, and redirect url(s) to the client application are required by the OAuth 2.0 and
OpenID Connect specifications.

Note that the same client registration can be used by multiple related applications. So you can
register a clientId once and use that same clientId for CPE and its client applications (e.g. ICN,
External Share, and Content Services GraphQL).

The following example shows the JSON posted to a UMS registration endpoint to register
GraphQL applications. . At present UMS only runs on Liberty. The GraphQL application on
tWAS determines the correct format of the redirect URL used in the registration process. A
description of each of these parameters can be found in
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/a
e/twlp_client_registration.html

POST https://my-ums-host:9443/oidc/endpoint/ums/registration
{
 "token_endpoint_auth_method": "client_secret_basic",
 "scope": "openid profile email",
 "grant_types": [
 "authorization_code",
 "client_credentials",
 "implicit",
 "refresh_token",
 "urn:ietf:params:oauth:grant-type:jwt-bearer"
],
 "response_types": [
 "code",
 "token",
 "id_token token"
],
 "application_type": "web",
 "subject_type": "public",
 "post_logout_redirect_uris": [],
 "preauthorized_scope": "openid profile email",

 "introspect_tokens": true,
 "trusted_uri_prefixes": [
 "https://my-cpe-server/",
 “https://my-graphql-client/,
],
 "resource_ids": [],
 "functional_user_groupIds": [],
 "client_id": "filenetP8Ums",
 "client_secret": "XXXX",
 "client_name": "FileNet P8 UMS",
 "redirect_uris": [
 "https://my-cpe-server:9443/oidcclient/redirect/FilenetP8Ums",

"regexp:https://my-graphql-client:!d*/oidcclient/redirect/FileneP8Ums",

],
 "allow_regexp_redirects": true
}

A few comments on this example:

• Multiple redirect_uris can be specified if there are multiple applications or multiple instances of the
same application that will use this client_id.

• If allow_regexp_redirects is true, then you can use regular expressions in the redirect_uris. Prefix
the URI with "regexp:" if specifying a regular expression, as shown in the examples above.

• The middle part of the redirect_uri depends on which OIDC client configuration you are using for
your application.

o If using openidConnectClient on Liberty, then use: /oidcclient/redirect/
o If using the Relying Party Interceptor on traditional Webshpere, then use: /oidcclient/

• The last part of the redirect_uri (e.g. FilenetP8Ums) corresponds to the id of the
openidConnectClient on Liberty or the Relying Party Interception identifier (e.g.
provider_1.identifier) on traditional WebSphere used in your application configuration.

• The trusted_uri_prefixes should correspond to those specified in the redirect_uris
• If you need to retrieve the current registration for your application, use a GET request with your

client_id at the end of the URL
o e.g. GET https://my-ums-host:9443/oidc/endpoint/ums/registration/filenetP8Ums

• If you need to update the current registration for your application, use a PUT request with your
client_id at the end of the URL with body contents similar to your original POST request

o e.g. PUT https://my-ums-host:9443/oidc/endpoint/ums/registration/filenetP8Ums

For production OAuth/OIDC
Follow the document at https://community.ibm.com/community/user/automation/blogs/roger-
bacalzo1/2020/12/17/how-to-configure-sso-between-icn-and-cpe?CommunityKey=2b67f465-a5fe-4a66-ad25-
f5e767b607e3&tab=recentcommunityblogsdashboard for configuring OAuth between a CPE client (e,g CS-
GraphQL) and CPE. Follow the steps to Configure the CS-GraphQL tWAS in the blog
When using OAuth, change the CS-GraphQL JVM argument for AuthTokenOrder to prefer
sending an OAuth token from CS-GraphQL to CPE.

-Dcom.filenet.authentication.wsi.AuthTokenOrder=oauth,ltpa

XSRF(CSRF)/CORS headers
Cross site request forgery (XSRF/CSRF) is a Cross site request forgery attack on the server.. to
mitigate these attacks, the CS-GraphQL application includes the headers.. these headers will be
included in every response that goes out from the CS-GraphQL

Cross-Origin Resource Sharing (CORS) is an HTTP-header based mechanism that allows a
server to indicate any other origins (domain, scheme, or port) than its own from which a browser
should permit loading of resources.

 In CS-GraphQL we added the support for all the CORS HTTP response headers through
JVM arguments. By default CORS Response headers through JVM options feature is disabled, to
enable the feature of setting the CORS response headers through JVM arguments, set the JVM
argument ecm.content.graphql.cors.enable to true. This JVM arguments sets the response
CORS headers to the default values mentioned below. The following table gives the CORS
HTTP response headers, their JVM arguments and default values. These values can be
overridden by using the JVM arguments based on the needs of the sample application. Following
default values should be sufficient for many applications.

HTTP Header JVM argument default values
Access-Control-Allow-Origin* ecm.content.graphql.cors.origin.url it sets the value to HTTP origin header
Access-Control-Allow-Methods* ecm.content.graphql.cors.allow.methods GET,POST,OPTIONS,PUT,DELETE,HEAD
Access-Control-Allow-Credentials* ecm.content.graphql.cors.allow.credentials.boolean true

Access-Control-Allow-Headers* ecm.content.graphql.cors.allow.headers

Connection, Pragma, Cache-Control,
Navigator-Client-Build, XSRFtoken, Origin,
User-Agent, Content-Type, Content-Length,
Navigator-Client-Identity, Accept-Control-
Request-Method, Accept-Control-Request-
Headers, Accept, Referer, Accept-Encoding,
Accept-Language, DNT, Host, Content-
Length, Cache-control, Cookie

Access-Control-Expose-Headers* ecm.content.graphql.cors.expose.headers

Content-Length, Content_Type, Content-
Language, X-Powered-By, Date, Allow,
Transfer-Encoding, $WSEP, DNT, Access-
Control-Allow-Credentials, Access-Control-
Allow-Headers, Access-Control-Allow-Max-
Age, Access-Control-Allow-Methods,
Access-Control-Allow-Origin, Access-
Control-Expose-Headers, Connection,
Cache-control, Cookie

Access-Control-Max-Age* ecm.content.graphql.cors.max.age.seconds 86400

Sample CORS JVM values
-Decm.content.graphql.cors.enable=true
-Decm.content.graphql.cors.origin.url=*
-Decm.content.graphql.cors.allow.methods=GET,POST,OPTIONS,PUT
-Decm.content.graphql.cors.allow.credentials.boolean=true
-Decm.content.graphql.cors.allow.headers=Connection,Pragma,Cache-Control,Navigator-Client-
Build,XSRFtoken,Origin,User-Agent,Content-Type,Content-Length,Navigator-Client-Identity,Accept-
Control-Request-Method,Accept-Control-Request-Headers,Accept,Referer,Accept-Encoding,Accept-
Language,DNT,Host,Content-Length,Cache-control,Cookie
-Decm.content.graphql.cors.expose.headers=Content-Length,Content_Type,Content-Language,X-Powered-
By,Date,Allow,Transfer-Encoding,$WSEP,DNT,Access-Control-Allow-Credentials,Access-Control-Allow-
Headers,Access-Control-Allow-Max-Age,Access-Control-Allow-Methods,Access-Control-Allow-
Origin,Access-Control-Expose-Headers,Connection,Cache-control,Cookie
-Decm.content.graphql.cors.max.age.seconds=86400

